High field study of the low dimensional quantum spin system

S. Kimura

KYOKUGEN, Osaka University, Toyonaka 5560-8531, Japan

The quantum spin systems in magnetic fields are the most promising objects to explore the quantum phase transitions (QPTs). Field-induced magnetic order in the spin gap systems, which was demonstrated as a realization of the Bose-Einstein condensation of magnon quasiparticles, is an example of intense study for the QPT. In contrast to this field-induced order, another curious phenomenon, in which the long range order is destroyed in presence of applied magnetic fields, was found in the quasi one-dimensional (1D) antiferromagnet BaCo$_2$V$_2$O$_8$ [1]. In this study, from the high field magnetization and ESR measurements up to 55 T, we show that the QPT from the Neel ordered phase to the spin liquid one in a 1D $S = 1/2$ antiferromagnetic XXZ model with Ising-like anisotropy in longitudinal fields is responsible for this field-induced order to disorder transition in BaCo$_2$V$_2$O$_8$ [2]. Furthermore, from the specific heat and neutron scattering measurements by using a dilution refrigerator, we have found a new ordered phase in field-induced region at very low temperature [3, 4]. We revealed an appearance of a novel type of an incommensurate order, which reflects peculiar quantum critical nature inherent in 1D quantum spin system.