Magnetic Excitations in Multiferroic TbMnO$_3$

D. Senff1, P. Link2, K. Hradil2, A. Hiess3, L.P. Regnault3, Y. Sidis4, N. Aliouane5, D.N. Argyriou5, and M. Braden1

1 II. Physikalisches Institut, Universität zu Köln – Germany. 2Forschungsneutronenquelle FRM II, München – Germany. 3Institut Laue-Langevin, Grenoble – France. 4Laboratoire Leon Brillouin, Saclay – France. 5Hahn-Meitner Institut, Berlin - Germany

In the recently discovered class of multiferroic materials, ferroelectricity is closely connected with a complex magnetic ordering. The electric polarization and a magnetic component appear simultaneously at the multiferroic transition. As this transition is continuous, one may expect an associated collective soft mode called electromagnon [1].

We present results of detailed neutron scattering experiments on the magnetic excitations in TbMnO$_3$, which is a key material for this new multiferroic class. The ferroelectric transition in TbMnO$_3$ at $T_{FE}=28$K coincides with a magnetic reorientation from a SDW-phase into a cycloidal ordering. In the ferroelectric spiral phase the magnon-spectrum consists of three branches, and using polarization analysis we may fully identify the character of the various magnetic excitations. The frequencies of two zone-centre excitations perfectly agree with recent IR-spectroscopy studies [2]. As IR-spectroscopy senses the phononic part only, whereas polarized neutron scattering measures a magnetic component, the combination of both techniques proves that these excitations possess mixed phonon-magnon character. These mode thus are the electromagnon excitations. We will discuss the temperature and magnetic field dependencies of the electromagnon signal.
