The hidden gap scale and nodalantinodal dichotomy in underdoped superconducting cuprates

A. Georges

Ecole Polytechnique and CNRS, Orsay, France

Recent electronic Raman scattering experiments performed by M. Le Tacon, A. Sacuto and coworkers (ESPCI, Paris) on hole-doped cuprates in the underdoped regime reveal that nodal and antinodal regions behave in very different manners. I will present the conclusions of a theoretical analysis of these experiments, based on a new sum-rule, and on Fermi liquid and phenomenological considerations, which lead to the conclusion that the superconducting gap function involves a hitherto hidden energy scale, which has the same doping-dependence than the superconducting transition temperature, in contrast to the pseudogap energy scale. The low-frequency Raman response and the temperature-dependence of the superfluid density, both controlled by nodal excitations, are shown to behave in a qualitatively similar manner, which puts strong constraints on microscopic theories of the cuprates.

Reference: Nature Physics, 2, 537 (2006); condmat/0603392