Charge character of the static `stripe' phase in La$_{2-x}$Ba$_x$CuO$_4$

P. Abbamonte

Department of Physics, University of Illinois

Keywords:

Stripe phases were predicted to arise in copper oxides through competition between antiferromagnetism and the kinetic energy of doped holes. The strongest evidence for stripes is neutron scattering from La$_{1.48}$Nd$_{0.4}$Sr$_{0.12}$CuO$_4$ (LNSCO) and La$_{1.875}$Ba$_{0.125}$CuO$_4$ (LBCO) which reveals coexisting spin and charge order whose wavelengths differ by a factor of two, reminiscent of charged rivers separating regions of oppositely-phased antiferromagnetism. Such a factor of two, however, is also seen in charge scattering from the spin density wave in Cr, and anyway a neutron is electrically neutral so detects only distortions in the crystal structure. It is not known if the `stripe' phase in LNSCO and LBCO actually involves ordering of the doped holes. I will present a study of LBCO with resonant soft x-ray scattering (RSXS) which is directly sensitive valence band ordering. Charge `stripe' scattering was seen to exhibit giant resonances at the mobile hole and upper-Hubbard band features below the O$_K$ edge, demonstrating direct participation of the doped holes. The peak-to-trough valence amplitude is estimated to be 0.063 holes which suggests, within a specific model of the stripe form factor, an integrated area of 0.59 holes under one stripe. This is in reasonable agreement with half-filled stripes.