The hexagonal RMnO$_3$ exhibit much higher magnetic and ferroelectric ordering temperatures, $T_N = 75$ K and $T_{FE} = 930$ K than the orthorhombic RMnO$_3$ with an incommensurate antiferromagnetic ordering below 40K. However, the coupling between the magnetic and electric order is very weak1. We have investigated the origin of the electric order by high temperature x-ray diffraction using high energy synchrotron radiation. We discuss the change in symmetry at the ferro-electric ordering temperature, which is a few hundred degrees below the tripling of the unit cell. We show that the hexagonal manganites are proper ferroelectrics in contrast with what has been reported until now2. Additionally, we have used magneto-capacitance measurements to study the coupling between the magnetic and electric order. We report large enhancements of the coupling by Ga substitutions in hexagonal RMnO$_3$3.

[1] The origin of ferroelectricity in magnetoelectric YMnO$_3$,
[2] Symmetry changes at the ferroelectric transition in multiferroic YMnO$_3$,
[3] Tuning of the magneto-ferroelectric coupling in Y(Mn,Ga)O$_3$,
 A. Nugroho, T.T.M. Palstra, to be submitted.