Magneto-ferroelectric properties of the

hexagonal Manganites

<u>Thomas T.M. Palstra¹</u>, G. Nénert¹, A. Nugroho¹, Y. Ren², H. Stokes³ ¹ Solid State Chemistry Laboratory, Materials Science Center, University of Groningen, NL-9747 AG Groningen, The Netherlands ² Argonne National Laboratory, Argonne Illinois, USA ³ Brigham Young University, Provo Utah, USA

The hexagonal RMnO₃ exhibit much higher magnetic and ferroelectric ordering temperatures, $T_N = 75$ K and $T_{FE} = 930$ K than the orthorhombic RMnO₃ with an incommensurate antiferromagnetic ordering below 40K. However, the coupling between the magnetic and electric order is very weak¹. We have investigated the origin of the electric order by high temperature x-ray diffraction using high energy synchrotron radiation. We discuss the change in symmetry at the ferro-electric ordering temperature, which is a few hundred degrees below the tripling of the unit cell. We show that the hexagonal manganites are proper ferroelectrics in contrast with what has been reported until now². Additionally, we have used magneto-capacitance measurements to study the coupling between the magnetic and electric order. We report large enhancements of the coupling by Ga substitutions in hexagonal RMnO₃ [3].

[1] The origin of ferroelectricity in magnetoelectric YMnO₃,

B. van Aken, T.T.M. Palstra, A. Filippetti, N. Hill, Nature Materials **3**, 164 (2004). [2] Symmetry changes at the ferroelectric transition in multiferroic YMnO₃,

G. Nénert, Y. Ren, H. Stokes, T.T.M. Palstra, submitted.

[3] Tuning of the magneto-ferroelectric coupling in $Y(Mn,Ga)O_3$,

A. Nogroho, T.T.M. Palstra, to be submitted