Colossal magneto-capacitive coupling in multiferroic spinel chalcogenides

Joachim Hemberger^{1,2} ¹ II. Physikalisches Institut, Universität zu Köln, D-50937 Köln, Germany ² Bereich Elektronische Korrelation und Magnetismus, Universität Augsburg, D-86135 Augsburg, Germany

The normal cubic spinel systems AB_2X_4 (X=S,Se) exhibit a wide range of exceptional ground state properties depending on the appropriate choice of *A*- and *B*-site ions. In the case of CdCr₂S₄ the Cd²⁺-ions on the *A*-sites are non-magnetic due to completely filled 4*d*-shells. The electronic configuration of the Cr³⁺ ions on the octahedral coordinated *B*-sites is determined by a 3-fold occupation of the low-lying t_{2g} -levels resulting in a total spin of *S* = 3/2. The magnetic coupling of the *B*-site sublattice leads to a ferromagnetic transition below T_c = 84 K. At the same time the system is not Jahn-Teller active. The absence of an orbital degree of freedom enables the structural degeneracy to be lifted by local dipolar distortions. As a consequence multi-ferroic behavior, namely the coexistence of ferromagnetism and relaxor ferroelectricity can be detected. In addition, the onset of spontaneous magnetization strongly influences the relaxor dynamics which leads to a very pronounced magneto-capacitive effect of up to 500% close to T_c .

[1] J. Hemberger, P. Lunkenheimer, R. Fichtl, H.-A. Krug von Nidda, V. Tsurkan, A. Loidl, Nature **434**, 364 (2005)

This work was partly supported by the Bundesministerium für Bildung und Forschung via grant No. VDI/EKM 13N6917-A and by the Deutsche Forschungsgemeinschaft (SFB 484)