Colossal magneto-capacitive coupling in multi-ferroic spinel chalcogenides

Joachim Hemberger1,2

1 II. Physikalisches Institut, Universität zu Köln, D-50937 Köln, Germany
2 Bereich Elektronische Korrelation und Magnetismus, Universität Augsburg, D-86135 Augsburg, Germany

The normal cubic spinel systems AB_2X_4 (X=S,Se) exhibit a wide range of exceptional ground state properties depending on the appropriate choice of A- and B-site ions. In the case of CdCr$_2$S$_4$ the Cd$^{2+}$-ions on the A-sites are non-magnetic due to completely filled 4d-shells. The electronic configuration of the Cr$^{3+}$ ions on the octahedral coordinated B-sites is determined by a 3-fold occupation of the low-lying t_{2g}-levels resulting in a total spin of $S = 3/2$. The magnetic coupling of the B-site sublattice leads to a ferromagnetic transition below $T_c = 84$ K. At the same time the system is not Jahn-Teller active. The absence of an orbital degree of freedom enables the structural degeneracy to be lifted by local dipolar distortions. As a consequence multi-ferroic behavior, namely the coexistence of ferromagnetism and relaxor ferroelectricity can be detected. In addition, the onset of spontaneous magnetization strongly influences the relaxor dynamics which leads to a very pronounced magneto-capacitive effect of up to 500% close to T_c.

This work was partly supported by the Bundesministerium für Bildung und Forschung via grant No. VDI/EKM 13N6917-A and by the Deutsche Forschungsgemeinschaft (SFB 484)