Frustrated S = 1/2 square lattice systems in complex Vanadium oxides

C. Geibel, E.E. Kaul, N. Kini, R. Shpanchenko, K. Penc, N. Shanon
Max-Planck Institute for Chemical Physics of solids, 01187 Dresden, Germany

The frustrated spin square lattice system has attracted strong theoretical attention since an interesting phase diagram and unusual ground states are expected depending on the relation between J_1 (nearest neighbor exchange) and J_2 (diagonal frustrating exchange). However, experimental studies are very limited because of the absence of appropriate compounds. The first example for the realization of such a lattice, Li$_2$VO(Si/Ge)O$_4$, was found only quite recently. Further on, the ratio J_1/J_2 in this compound is controversial, more recent investigations suggest the frustration to be very weak. We found a new series of compound, AA’VO(PO$_4$)$_2$, with A, A’ = Zn, Pb, Sr, Ba, where the structural data as well as susceptibility $\chi(T)$ and specific heat $C(T)$ data suggest such a frustrated square lattice to be realized. However, a detailed analysis of our $\chi(T)$ and $C(T)$ data using high temperature series expansion demonstrates that in these compounds, J_1 is ferromagnetic while J_2 is antiferromagnetic, $|J_2|$ being larger than $|J_1|$. These systems are thus the first examples for a frustrated spin square lattice system with a ferromagnetic nearest neighbor exchange. The frustration is changing quite strongly with the A and A’ cations, being strongest in SrZnVO(PO$_4$)$_2$ where $|J_1| \approx |J_2|$. Our results prompted the theoretical investigation of the J_1-J_2 model with ferromagnetic J_1, since such a constellation was yet barely considered.