COMMENTS ON THE MOTT-HUBBARD TRANSITION

J. B. Goodenough and J.-S. Zhou

Texas Materials Institute, ETC 9.102, The University of Texas at Austin 1 University Station, C2201, Austin, TX 78712

ABSTRACT

Comparison of the phase diagrams for the RMnO₃ and RNiO₃ families (R = rareearth) show the influence of a strong intraatomic Hund exchange on the MnO₃ array, which approaches the Mott-Hubbard transition from the localized-electron side in LaMnO₃, and of the stronger O-2p component in the eg orbitals of the NiO₃ array, which passes through the Mott-Hubbard transition between SmNiO₃ and LaNiO₃. The firstorder character of the Mott-Hubbard transition at lower temperatures is demonstrated for mixed-valent as well as single-valent systems, for metal-metal as well as metal-oxygenmetal interactions. Comparisons of the transport properties of Fe₃O₄ above the Verwey transition with those of La_{1-x}Sr_xCuO₄, of theRMnO₃ family above the orbital-ordering temperature, and of the RNiO₃ family above the insulator-metal transition show that at higher temperatures the mobility of the charge carriers makes a smooth transition from polaronic to vibronic to itinerant behavior with increasing bandwidth.