SFB 608

Einladung zum Kolloquium

Ort:	Universität zu Köln II. Physikalisches Institut, Seminarraum 201
Zeit:	01. Juni 2005, 13 Uhr s.t.
Sprecher:	Dr. Masahiko Isobe, Materials Design and Characterization Laboratory, Institute for Solid State Physics, The University of Tokyo, JAPAN
Thema:	The novel phase transitions of Pyroxene NaTiSi ₂ O ₆ , Spinel Oxide MgTi ₂ O ₄ , Hollandite K ₂ V ₈ O ₁₆ , Perovskite CaCrO ₃ , and a layer compound Na ₉ V ₁₄ O ₃₅

I will present the novel phase transitions of some transition metal oxides. I have searched the material with the unusual physical properties for more than 10 years, for example superconducting behavior, metal-insulator transition, charge ordering, orbital ordering, spin gap behavior, and so on. About 10 years ago, we found a phase transition of NaV_2O_5 . This material is very attractive. The phase transition is still discussed by many people.

Recently we have researched Ti^{3+} compounds. In NaTiSi₂O₆ and MgTi₂O₄ we observed the phase transition newly. In these transitions, the orbital ordering maybe plays an important role. Last year we obtained the interesting materials $K_2V_8O_{16}$ and CaCrO₃ by high pressure synthesis. $K_2V_8O_{16}$ shows a metal-insulator transition. In CaCrO₃, we observed a magnetic transition accompanied by a structural change. Also this year I start to study the layer compound Na₉V₁₄O₃₅, again. Because it was reported that this compound shows the charge ordering transition last year.

Gez. Prof. M. Braden