Hollandite: a novel class of oxides with unusual properties

Prof. Dr. Yutaka Ueda Institute for Solid State Physics University of Tokyo

Hollandites: $K_x M_8 O_{16}$ (*M* = Ti, V, Cr, and Mn) give us a chance to systematically study electron correlation effect as a function of electron filling. The common structure is made of double-chains (zigzag-chains) formed by edge-sharing MO_6 octahedra. Such double-chains are interconnected through common corners to form M_8O_{16} -framework with tunnels. The sites within the tunnels are occupied by K ions which donate electrons to the M_8O_{16} -framework, leading to a mixed valence of $M^{3+}/M^{4+} = 1/3$ at x = 2. K₂Ti₈O₁₆ with a relatively lower electron filling is a Pauli paramagnetic metal [1]. K₂V₈O₁₆ [2,3] and K₂Cr₈O₁₆ [4] with higher electron fillings show metal-insulator (MI) transitions. $K_2V_8O_{16}$ exhibits a first order MI transition at 170 K, accompanied by charge order between V^{4+} and V^{3+} and the formation of V^{4+} - V^{4+} spin-singlet pairs and $V^{3+}-V^{3+}$ pairs in the low temperature insulator phase. On the other hand, $K_2Cr_8O_{16}$ is a ferromagnetic metal with $T_c = 180$ K, which is explained by the double exchange mechanism, but surprisingly this ferromagnetic metal phase undergoes a transition to an insulator at $T_{\rm MI} = 95$ K, remaining ferromagnetic. Recent structural study by synchrotron x-ray diffraction of the single crystal and electronic structure calculation have revealed that this novel ferromagnetic MI transition is caused by the Peierls instability in the quasi-one-dimensional column structure made of four coupled Cr-O chains, leading to the formation of tetramer of Cr ions [5]. The manganese hollandite has K-deficiency as K_{1.6}Mn₈O₁₆. K_{1.6}Mn₈O₁₆ shows a structural transition at 250 K, accompanied by K-vacancy order and simultaneous charge order between Mn^{3+} and Mn^{4+} . $K_{1.6}Mn_8O_{16}$ has one extra e_g -electron per five Mn^{4+} ions and these extra electrons could be trapped by Mn ions adjacent to K-vacancies, resulting in Mn^{3+} state or a polaronic state of $Mn^{+4-\delta}$ and $Mn^{+3+\delta}$. Such an electron trapping at Mn ions near K-vacancies would be realized even in the disordered state of K-vacancies and would be responsible for the observed variable range hopping type conductivity in the wide temperature region.

References

- [1] M. Isobe, S. Koishi, and Y. Ueda: J. Magn. Magn. Mater. 310 (2007) 888-889.
- [2] M. Isobe, S. Koishi, N. Kouno, J. Yamaura, T. Yamauchi, H. Ueda, H. Gotou, T. Yagi, and Y. Ueda: J. Phys. Soc. Jpn. 75 (2006) 073801.
- [3] A.C. Komarek, M. Isobe, J. Hemberger, D. Meiner, T. Lorenz, D. Trots, A. Cervellino, M.T. Fernández-Díaz, Y. Ueda, and M. Braden: Phys. Rev. Lett. 107 (2011) 027201.
- [4] K. Hasegawa, M. Isobe, T. Yamauchi, H. Ueda, J. Yamaura, H. Gotou, T. Yagi, H. Sato, and Y. Ueda: Phys. Rev. Lett. 103 (2009) 146403.
- [5] T. Toriyama, A. Nakao, Y. Yamaki, H. Nakao, Y. Murakami, K. Hasegawa, M. Isobe, Y. Ueda, A.V. Ushakov, D.I. Khomskii, S.V. Streltsov, T. Konishi, and Y. Ohta: submitted to Phys. Rev. Lett.